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Abstract—Packaging is a well-known barrier to the advance-
ment of microelectromechanical systems (MEMS) for RF applica-
tions. To pave the way for the removal of this barrier, we have de-
veloped a flip-chip assembly technology to transfer foundry-fabri-
cated MEM S devices from the host silicon substrate to a ceramic
substrate. Specifically, posts have been designed and fabricated to
assure excellent RF performance by achieving a precise gap be-
tween the device and ceramic substrate. | n addition, a novel liquid
crystal polymer (LCP) encapsulation technology has been devel-
oped to protect the RF MEMS device. LCP is a good encapsula-
tion material for nonhermetic packaging because it significantly
reduces the packaging cost. We have demonstrated excellent RF
performanceof variable M EM Scapacitor sthat have been flip-chip
assembled and L CP encapsulated. The quality (Q) factors of such
capacitorswere measured to be higher than 300 at 1.0 GHz.

Index Terms—Liquid crystal polymer (LCP), microelectro-
mechanical systems (MEMS) devices, RF packaging, variable
capacitor.

I. INTRODUCTION

OST AND reliability are two main challenges to the

advancements of RF microelectromechanical systems
(MEMYS) application where can be brought out of the laboratory
and introduced into commercial products. Based on the evo-
lution of microelectronics, we understand that foundry-based
manufacturing and nonhermetic packaging are essential to
reducing costs while assuring reliability. Unfortunately, most
RF MEMS devices demonstrated to date have been fabricated
using custom-devel oped processes and have been protected by
hermetic packages[1]. It isimportant to explore new packaging
technologies that will enable future RF MEMS devices to
be manufactured using foundry processes and protected in
nonhermetic packages. Most of MEMS foundry processes are
not directly compatible with RF MEMS. For example, the mul-
tiuser microelectromechanical systems processes (MUMPS)
are based on low-resistively silicon wafers, which are not good
substrates for RF applications due to their high losses at RF
frequencies [2], [3]. To remedy this, a flip-assembly process
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with silicon removal technology was previously developed
to transfer MEMS from the silicon to a ceramic substrate
containing RF circuits [4]. However, the transferred devices
did not perform well due to large gap variations corresponding
to varied solder bump heights. As aresult, a post-enabled pre-
cision flip-chip assembly technology has now been developed
to assure high-quality transfer of the foundry-fabricated RF
MEMS onto an RF substrate [5].

For nonhermetic packaging, moisture-induced adhesion is
always a key mechanism for “stiction” failures [6], [7]. The
energy of the moisture-induced adhesion was increases by 80
times after a 7-h 90% relative humidity (RH) test. However, the
initial adhesion energy under 90% RH was very close to that
under 5.0% RH. The undesirable increase was the result of the
degradation of the self-assembled monolayer (SAM) coating.
With advancements in atomic layer deposition (ALD), we have
a great opportunity to create a super-strong hydrophobic inor-
ganic surface coating to maintain the low adhesion energy even
under a high humidity environment. ALD is described in [9],
and its hydrophobic coating will be presented in the future. The
next packaging challenge is the control of the humidity level
inside a nonhermetic package so it is not affected significantly
by the large variations in the environment outside the package.
Liquid crystal polymer (LCP) has been identified as the best
candidate to control the humidity in the nonhermetic packaging
of RF MEMS. LCP has the following advantages:

1) its near-hermetic permeability of moisture can keep the
MEM Slocal surroundingsdry for monthseveninahumid
environment;

2) its low RF loss properties assure excellent RF perfor-
mance after packaging;

3) its moldability assures a high-speed glob-top encapsula-
tion process [10]-{12].

An LCP encapsulation process has been devel oped for flip-chip
assembled RF MEMS. In this paper, we will present the post-
enabled precision flip-chip assembly and the L CP encapsulation
of an RF MEMS variable capacitor. More importantly, we will
present excellent RF performance by these new technologies.

Il. POST-ENABLED FLIP-CHIP ASSEMBLY
A. Flip-Chip Assembly With Slicon Removal

A two-dimensiona MEMS variable capacitor array was
assembled using flip-chip bonding with tethers on the donor
substrate (see Fig. 1) [13]. In this study, the bottom alumina
ceramic substrate was patterned with a 50-€2 microstrip gold
transmission line, which acting as one large electrode. The
gold layer thickness was 2.4 yum. A 2.0-um indium was then
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a) Bond MEMS chip to ceramic
substrate using thermo-compression bonding
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Fig. 1. Flip-chip assembly illustrations. Notice the tether breaks on the sides
of the remaining device.
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Fig. 2. 3 x 3 variable capacitor shows: (a) top view of the device feature an
array, acompliant flexure and bond pad, (b) side-view of three capacitor platesin
the up position before flip-chip and one platein the down position after flip-chip
assembly. The schematic demonstrates the uniform gab based on the post height.

deposited for bonding. In addition, a 160-nm-thick alumina
dielectric layer was selectively deposited by ALD coating
techniques [9]. Following foundry fabrication, but before
bonding, the MEMS chip was released in 49% hydrofluoric
acid (HF), followed by a CO. critical-point drying process.
After the release, the MEM S-based variable capacitor array
(M-VCA) wasstill connected to the silicon substrate by tethers.
Asshown in Fig. 1(b), during the bonding process, these tethers
were broken, leaving behind the top plate of the M-VCA.
As shown in Fig. 2(a), a3 x 3 M-VCA was assembled and
transferred to an alumina substrate. The side-view illustrates
how the capacitor plates maintained a uniform air gap between
the MEMS top plates and the electrodes on the substrate.
Such a gap was achieved through the use of posts, which were
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Fig. 3. Posts and plates before the flip-chip assembly.

critical to the precision flip-chip assembly. After bonding, the
gap between the MEMS device and the substrate varied from
one plate to the other. Such a variation was the result of pro-
cessing variations, therma mismatches, and residua stresses.
As advantages of the new design, during €l ectrostatic actuation,
the entire array, which is supported by compliant flexures, was
pulled down onto the posts, as shown in Fig. 2(b), leaving auni-
form gap between the top plates and the substrate. The com-
pliant flexure will absorb the thermal mismatch. These posts
were the critical new feature specifically designed to provide
uniform gap heights for foundry-fabricated flip-chip assembled
MEMS [9].

B. Post and Layer Structure

Posts can be created in most of the MEM S foundry processes
with features such as dimples. However, these dimples are not
compatible with the flip-chip assembly because all the features
are upside down. As a results, new post features had to be de-
veloped. Through a novel design, we were able to use existing
foundry process to create new posts for the flip-chip assembly.
Fig. 3 illustrates an example for the posts designed and fabri-
cated using the MUMPs. The difference between the height of
the post—which ismade of poly0 (0.5 ;zm), poly1 (2 »m), oxide
2(0.75 pm), poly2 (1.5 #m), and gold (0.5 ;zm)—and the height
of the plate—which is made of poly2 (1.5 um), gold (0.5 zzm),
and anchorl (to remove oxide 1 layer)—is 4.5 ym. Thisis the
uniform gap height for the M-V CA. If needed, other layer com-
binations for the posts and plates could provide different gaps.
Table | lists three example gaps, although we have designed
and tested 18 different gaps ranging from 0.25 to 4.50 um in
0.25-p:m increments.

C. C-V Rdationship and Tuning Ratio

Fig. 4 shows the variable capacitance as a function of volt-
ages applied. The maximum capacitance, measured at 74 V with
three plates snapped down, was Cyown = 1.5 pF. In addition,
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TABLE |
POST AND PLATE LAYER STRUCTURE
Gap () Plate layers Post layers
1.00 PO, P2, gold PO, P1, P2, via
2.50 PO, P2, anchorl,gold  Pl, P2, via
4.50 P2, via, gold PO, P1, P2, via, gold
hWiEasured Capacitance vws VWoltage
16 16
14 - 1.4
23 dowr 23 down
Loq9 F e 19
@ *
=) 1 1
- -
= 08 . " 0.8
S ne =3 dogwg 06
%04 F}u"—‘” Ut 0.4
[T -
02 A T T r 02
] 20 . AL 0 a0
h Wolts 4 6 8
LCR Measurmments ANErAge

Fig. 4. Capacitance measurementsof a3 x 3 array resulted in atuning range
of 4.7: 1 achieved between 0.32-1.5 pF.
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Fig. 5. lllustration of 171-MHz tuning range under applied voltage and
equivalent circuit model. Markers 2 and 3 indicate the resonance peaks with 0
and 74V applied, respectively.

thisfigure clearly demonstrates the digital increments of the ca-
pacitance. Such digital performance can tolerate large manufac-
turing variations such as the thickness or width variation of the
plates. Further improvementsare to optimizethe spring stiffness
of each plate for pull-in voltages well defined by the precision.
Fig. 5 presents the tuning of 171 MHz and @ factor above 240
using the variable capacitors. More detailswere reported in [5].

I1l. ENCAPSULATION PROCESS

As previously mentioned, another major packaging issue is
encapsulation for nonhermetic packaging. Fig. 6 illustrates a
novel concept for the encapsulation. A micro-cap is placed over
the MEM S after flip-chip assembly to protect it. Thismicro-cap
can be made of glass or other materials, but in this case, we used
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apressed glassfrit. L CP can then be deposited with ahigh-speed
dispensing machine for encapsulation. This concept is similar
to glob-top epoxy sealing for microelectronics; it is expected to
reduce packaging costs substantially. Fig. 7 shows the encapsu-
lation process steps for a MEM S variable capacitor. Fig. 7(a) is
a capacitor flip-chip assembled onto an alumina substrate. This
device was different from the one shown in Fig. 2 in that it was
only a2 x 2 array and had small bonding pads to reduce RF
losses. In addition, flexure widths were changed to meet a new
voltage requirement. Fig. 7(b) shows a glass micro-cap placed
over the device. The alignment between the cap and transmis-
sion line was critical to RF performance. With our in-house
flip-chip bonder, we were able to place the cap within 1-2 ;m.
The cap also had to be bonded to the substrate. Using a thin
layer of low vapor epoxy, we fixed the cap in place. If epoxy
outgassing turned out to be a problem, the glass could be bonded
directly to gold or aluminum pads. Such SiO, to metal bonding
is commonly used for wire bonding to polysilicon MEM S [14].
Finaly, Fig. 7(c) showsthe L CP encapsulation completely cov-
ering the glass micro-cap. The LCP was placed on the cap, fol-
lowed by heating above its melting temperature of 260 °C. Two
remaining issues need to be addressed for this new technology:
First, the sealing and mechanical characteristics of the package
must be determined. Second, the effects on the RF performance
of the M-V CA must also be measured. While the adhesion be-
tween molten LCP, the gold pads and alumina substrate seems
to bevery strong (afull analysis of the sealing and mechanics of
the package has been reserved for a future paper). The RF per-
formance of the packaged M-V CA is described in Section 1V,
though wewill focus on the outstanding RF performancefor the
variable capacitor flip-chip assembled and L CP encapsul ated.

IV. RF CHARACTERIZATION

Two different experiments have been carried out for the RF
characterization of LCP encapsulation. In the first experiment,
@ factors of afixed interdigital capacitor with and without LCP
glob top encapsul ation have been measured. Asasecond experi-
ment, ) factors of aflip-chip-assembled and L CP-encapsul ated
M-V CA have been measured to quantify the overall packaging
effects. All the measurements were conducted using an RF res-
onator. An HP 8510B network analyzer was connected to ares-
onator to measure the @ factor. We used an Aglient 85052D
3.5-mm calibration kit for the resonator calibration before the
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Fig. 7. 2 x 2variable capacitor array sealed by the new L CP encapsul ation processes. (a) Device transferred to an alumina substrate. (b) Glass micro-cap placed

to protect the device. (c) LCP encapsulation.
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Fig.8. MEMSdeviceiswire bonded between the resonator and ground where
a chip-capacitor(C = 150 pF) actsasadc block, whilearesistor (R = 1 k),
together with a ribbon wire, acts as an RF choke [4].

measurement. Fig. 8 shows the circuit diagram for the resonator
consisting of a coaxia line with an rectangular outer conductor
and circular inner conductor. The @ factor of the resonator must
bevery highin order to estimate the high @) of theM-VCA. The
resonance frequency of the resonator (without the MEMS ca-
pacitor) was designed to be 1.0 GHz. The 150-pF chip capacitor
providesaground path for the RF signal, and the 10-kW resistor
prevents leakage of the RF signal into the bias circuit. The @
factor for this unloaded circuit was measured to be in the range
of 310-375at 1.05 GHz. The ( of the MEM S capacitor is calcu-
lated using the equation Qnenvs = (1/Q1.0ad —1/QUnload)—1,
where Q10,4 and Qunieaq arethe measured @ values of theres-
onator with and without the MEM S device, respectively. The @
factor ismeasured using the 3-dB point method. A resolution of
10-20 MHz is used for accurate Q-factor measurements.

A. Interdigital Capacitor

As shown in Fig. 9, afixed inter-digital capacitor was pat-
terned with a 50-2 microstrip gold transmission line. The gold
layer thickness was 2.4 m on an alumina substrate. Its capac-
itance was 0.179 pF. The device was encapsulated by an LCP
glob with a diameter of 1.5 mm. The encapsulated device was
wire bonded to the rest of the resonator circuit.

Fig. 9 shows the resonance frequencies of the unloaded and
loaded (with the interdigital capacitor) resonator. The decrease
of thereflection from the unloaded to loaded caseswastheresult
of impedance mismatch due to the capacitive loading. The mea-
sured Q-factor values for the unloaded and loaded (LCP glob
and interdigital capacitor) resonator are 365 and 361, respec-
tively. Since the measurements for such a high-¢2 system are
very sensitive, the experiments were repeated three times with
new wire bonds each experiment. In the second measurement,
the @ factor for the unloaded resonator and the encapsulated
interdigital capacitor by LCP was around 335. In the third mea-
surement, both were 375. However, the new wire bonds resulted
in different inductance valuesfor the circuit. Thus, the measure-
mentswererepeatable, and the L CP encapsul ation did not affect
the RF losses.
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Fig.9. Resonancefrequenciesof theunloaded and loaded (withtheinterdigital
capacitor) resonator. y-axis represents reflection coefficient measurements with
5-dB increments.
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Fig. 10. Resonance frequencies of the unloaded and loaded (with MEMS
with glass cap and LCP encapsulation material) resonator. y-axis represents
reflection coefficient measurements with 5-dB increments.

B. MEMS Assembled and Encapsulated

Fig. 10 presents RF characterizations of the flip-chip assem-
bled and L CP encapsulated MEMS variable capacitor. A scan-
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TABLE 1
RESONANCE FREQUENCY SHIFT CAUSED BY THE VARIABLE CAPACITOR

Center Frequency (MHz) 929 923 924 911 910 908
Bias Voltage (Volts) 0 30 40 45 60 70

ning el ectron microscopy (SEM) picture of thispackaged device
is shown in Fig. 7. The variable capacitor consist of a2 x 2
capacitor plate, each moving plate is 50 pm?, three 100-;:m?
bonding pads, and compliant flexure. The @ factor for the un-
loaded resonator was around 307 and, with the MEM S loaded,
was around 277. As aresult, the () factor for the assembled and
encapsulated MEMS device was above 2846! Of course, this
value is not quantitative because it is higher than the @ factor
of the unloaded resonator. Nevertheless, the results clearly indi-
cate that the effects of LCP encapsulation on the RF losses are
negligible. These results demonstrate that we have devel oped
excellent MEMS devices, flip-chip assembly, and LCP encap-
sulation processes (with no effects on the RF performance at
1 GH2).

Table 11 summarizes the resonator frequency shift caused
by application of the dc voltage to the variable capacitor. This
tuning range is not large when compared with the results shown
in Fig. 5. This capacitor was designed with a smaller array
and, thus, provides a small capacitance ratio. The @ factor is
a proportional capacitance value, which explains the higher @
factor for this design. MEMS variable capacitors can be de-
signed and fabricated easily using the existing MEM S foundry
processes. With the packaging technology developed, we are
able to custom design a specific variable MEMS capacitor to
meet different RF requirements.

V. CONCLUSION

An approach for low-cost and rapid encapsulation of
RF-MEMS devices using LCP has been discussed. Further-
more, novel post designs for precise control of gap height
and, hence, the capacitance values, have been presented. The
Q-factor values for an unloaded and loaded (flip-chip assem-
bled variable capacitor with L CP encapsulation) resonator were
measured to be 307 and 277, respectively. Thus, the Q-factor
value of the MEM S variable capacitor with LCP encapsulation
is equa to or higher than the 307, which is the @ vaue of
the unloaded resonator. Further studies are needed for RF
characterization at higher frequencies.
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